Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Hear Res ; 443: 108951, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38277880

RESUMO

Auditory sensation is based in nanoscale vibration of the sensory tissue of the cochlea, the organ of Corti complex (OCC). Motion within the OCC is now observable due to optical coherence tomography. In a previous study (Cooper et al., 2018), the region that includes the electro-motile outer hair cells (OHC) and Deiters cells (DC) was observed to move with larger amplitude than the basilar membrane (BM) and surrounding regions and was termed the "hotspot." In addition to this quantitative distinction, the hotspot moved qualitatively differently than the BM, in that its motion scaled nonlinearly with stimulus level at all frequencies, evincing sub-BF activity. Sub-BF activity enhances non-BF motion; thus the frequency tuning of the OHC/DC region was reduced relative to the BM. In this work we further explore the motion of the gerbil basal OCC and find that regions that lack significant sub-BF activity include the BM, the medial and lateral OCC, and the reticular lamina (RL) region. The observation that the RL region does not move actively sub-BF (already observed in Cho and Puria 2022), suggests that hair cell stereocilia are not exposed to sub-BF activity in the cochlear base. The observation that the lateral and RL regions move approximately linearly sub-BF indicates that linear forces dominate non-linear OHC-based forces on these components at sub-BF frequencies. A complex difference analysis was performed to reveal the internal motion of the OHC/DC region and showed that amplitude structure and phase shifts in the directly measured OHC/DC motion emerge due to the internal OHC/DC motion destructively interfering with BM motion.


Assuntos
Cóclea , Órgão Espiral , Animais , Gerbillinae , Estimulação Acústica , Células Ciliadas Auditivas Externas , Membrana Basilar , Vibração
2.
Biomed Opt Express ; 14(11): 5539-5554, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-38021133

RESUMO

Optical coherence tomography (OCT) is capable of angstrom-scale vibrometry of particular interest to researchers of auditory mechanics. We develop a method for compressed sensing vibrometry using OCT that significantly reduces acquisition time for dense motion maps. Our method, based on total generalized variation with uniform subsampling, can reduce the number of samples needed to measure motion maps by a factor of ten with less than 5% normalized mean square error when tested on a diverse set of in vivo measurements from the gerbil cochlea. This opens up the possibility for more complex in vivo experiments for cochlear mechanics.

3.
bioRxiv ; 2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37873430

RESUMO

Auditory sensation is based in nanoscale vibration of the sensory tissue of the cochlea, the organ of Corti complex (OCC). Motion within the OCC is now observable due to optical coherence tomography. In the cochlear base, in response to sound stimulation, the region that includes the electro-motile outer hair cells (OHC) was observed to move with larger amplitude than the basilar membrane (BM) and surrounding regions. The intense motion is based in active cell mechanics, and the region was termed the "hotspot" (Cooper et al., 2018, Nature comm). In addition to this quantitative distinction, the hotspot moved qualitatively differently than the BM, in that its motion scaled nonlinearly with stimulus level at all frequencies, evincing sub-BF activity. Sub-BF activity enhances non-BF motion; thus the frequency tuning of the hotspot was reduced relative to the BM. Regions that did not exhibit sub-BF activity are here defined as the OCC "frame". By this definition the frame includes the BM, the medial and lateral OCC, and most significantly, the reticular lamina (RL). The frame concept groups the majority OCC as a structure that is largely shielded from sub-BF activity. This shielding, and how it is achieved, are key to the active frequency tuning of the cochlea. The observation that the RL does not move actively sub-BF indicates that hair cell stereocilia are not exposed to sub-BF activity. A complex difference analysis reveals the motion of the hotspot relative to the frame.

4.
Hear Res ; 423: 108389, 2022 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-34774368

RESUMO

Intra organ of Corti (OC) vibrations differ from those measured at the basilar membrane (BM), with higher amplitudes and a wide-band nonlinearity extending well below a region's best frequency. The vibrations are boosted by the cochlear amplifier, the active processes within the mammalian hearing organ, and are thus sensitive to metabolic or pharmacological manipulation. We introduced salicylate, a known blocker of outer hair cell (OHC) based electromotility, into the perilymphatic space by applying sodium salicylate onto the round window membrane. Vibration patterns of an area of the OC were mapped with phase sensitive optical coherence tomography before and after treatment; distortion product otoacoustic emissions (DPOAEs) were measured at similar times to assess the cochlear condition. Following treatment, all regions showed a loss of vibration amplitude and tuning while OHC-region vibrations retained their wide-band nonlinearity. OC vibrations, which had been relatively confined in a region including OHCs and extending to the BM at the outer pillar foot, became less confined with structures lateral to the OHCs sometimes exhibiting the highest amplitudes. Vibrations and DPOAEs could recover to baseline levels over approximately three hours post treatment. This article is part of the Special Issue Outer hair cell Edited by Joseph Santos-Sacchi and Kumar Navaratnam.


Assuntos
Salicilatos , Vibração , Animais , Membrana Basilar , Cóclea , Células Ciliadas Auditivas Externas , Mamíferos , Órgão Espiral
5.
Hear Res ; 405: 108234, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33930834

RESUMO

Studying the in-vivo mechanical and electrophysiological cochlear responses in several species helps us to have a comprehensive view of the sensitivity and frequency selectivity of the cochlea. Different species might use different mechanisms to achieve the sharp frequency-place map. The outer hair cells (OHC) play an important role in mediating frequency tuning. In the present work, we measured the OHC-generated local cochlear microphonic (LCM) and the motion of different layers in the organ of Corti using optical coherence tomography (OCT) in the first turn of the cochlea in guinea pig. In the best frequency (BF) band, our observations were similar to our previous measurements in gerbil: a nonlinear peak in LCM responses and in the basilar membrane (BM) and OHC-region displacements, and higher motion in the OHC region than the BM. Sub-BF the responses in the two species were different. In both species the sub-BF displacement of the BM was linear and LCM was nonlinear. Sub-BF in the OHC-region, nonlinearity was only observed in a subset of healthy guinea pig cochleae while in gerbil, robust nonlinearity was observed in all healthy cochleae. The differences suggest that gerbils and guinea pigs employ different mechanisms for filtering sub-BF OHC activity from BM responses. However, it cannot be ruled out that the differences are due to technical measurement differences across the species.


Assuntos
Membrana Basilar , Células Ciliadas Auditivas Externas , Movimento (Física) , Animais , Cóclea , Gerbillinae , Cobaias
6.
Curr Opin Physiol ; 18: 56-62, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33103018

RESUMO

The cochlea is a complex biological machine that transduces sound-induced mechanical vibrations to neural signals. Hair cells within the sensory tissue of the cochlea transduce vibrations into electrical signals, and exert electromechanical feedback that enhances the passive frequency separation provided by the cochlea's traveling wave mechanics; this enhancement is termed cochlear amplification. The vibration of the sensory tissue has been studied with many techniques, and the current state of the art is optical coherence tomography (OCT). The OCT technique allows for motion of intra-organ structures to be measured in vivo at many layers within the sensory tissue, at several angles and in previously under-explored species. OCT-based observations are already impacting our understanding of hair cell excitation and cochlear amplification.

7.
Biophys J ; 119(10): 2087-2101, 2020 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-33091378

RESUMO

The mammalian hearing organ, the cochlea, contains an active amplifier to boost the vibrational response to low level sounds. Hallmarks of this active process are sharp location-dependent frequency tuning and compressive nonlinearity over a wide stimulus range. The amplifier relies on outer hair cell (OHC)-generated forces driven in part by the endocochlear potential, the ∼+80 mV potential maintained in scala media, generated by the stria vascularis. We transiently eliminated the endocochlear potential in vivo by an intravenous injection of furosemide and measured the vibrations of different layers in the cochlea's organ of Corti using optical coherence tomography. Distortion product otoacoustic emissions were also monitored. After furosemide injection, the vibrations of the basilar membrane lost the best frequency (BF) peak and showed broad tuning similar to a passive cochlea. The intra-organ of Corti vibrations measured in the region of the OHCs lost the BF peak and showed low-pass responses but retained nonlinearity. This strongly suggests that OHC electromotility was operating and being driven by nonlinear OHC current. Thus, although electromotility is presumably necessary to produce a healthy BF peak, the mere presence of electromotility is not sufficient. The BF peak recovered nearly fully within 2 h, along with the recovery of odd-order distortion product otoacoustic emissions. The recovery pattern suggests that physical shifts in operating condition are a critical step in the recovery process.


Assuntos
Cóclea , Audição , Animais , Membrana Basilar , Células Ciliadas Auditivas Externas , Vibração
8.
Hear Res ; 377: 271-281, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31015062

RESUMO

Mechanical displacements of the basilar membrane (BM) and the electrophysiological responses of the auditory outer hair cells (OHCs) are key components of the frequency tuning and cochlear amplification in the mammalian cochlea. In the work presented here, we measured the responses of (1) the extracellular voltage generated by OHCs (VOHC) and (2) displacements within the organ of Corti complex (OCC) to a multi-tone stimulus, and to single tones. Using optical coherence tomography (OCT), we were able to measure displacements of different layers in the OCC simultaneously, in the base of the gerbil cochlea. We explored the effect of the two types of sound stimuli to the nonlinear behavior of voltage and displacement in two frequency regions: a frequency region below the BM nonlinearity (sub-BF region: f < ∼0.7 BF), and in the best frequency (BF) region. In the sub-BF region, BM motion (XBM) had linear growth for both stimulus types, and the motion in the OHC region (XOHC) was mildly nonlinear for single tones, and relatively strongly nonlinear for multi-tones. Sub-BF, the nonlinear character of VOHC was similar to that of XOHC. In the BF region XBM, VOHC and XOHC all possessed the now-classic nonlinearity of the BF peak. Coupling these observations with previous findings on phasing between OHC force and traveling wave motions, we propose the following framework for cochlear nonlinearity: The BF-region nonlinearity is an amplifying nonlinearity, in which OHC forces input power into the traveling wave, allowing it to travel further apical to the region where it peaks. The sub-BF nonlinearity is a non-amplifying nonlinearity; it represents OHC electromotility, and saturates due to OHC current saturation, but the OHC forces do not possess the proper phasing to feed power into the traveling wave.


Assuntos
Cóclea/inervação , Células Ciliadas Auditivas Externas/fisiologia , Audição , Mecanotransdução Celular , Modelos Neurológicos , Estimulação Acústica , Animais , Cóclea/diagnóstico por imagem , Potenciais Evocados , Gerbillinae , Dinâmica não Linear , Fatores de Tempo , Tomografia de Coerência Óptica
9.
Biomed Opt Express ; 10(2): 1032-1043, 2019 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-30800530

RESUMO

We developed a spectral domain optical coherence tomography (SDOCT) fiber optic probe for imaging and sub-nanometer displacement measurements inside the mammalian cochlea. The probe, 140 µm in diameter, can scan laterally up to 400 µm by means of a piezoelectric bender. Two different sampling rates are used, 10 kHz for high-resolution B-scan imaging, and 100 kHz for displacement measurements in order to span the auditory frequency range of gerbil (~50 kHz). Once the cochlear structures are recognized, the scanning range is gradually decreased and ultimately stopped with the probe pointing at the selected angle to measure the simultaneous displacements of multiple structures inside the organ of Corti (OC). The displacement measurement is based on spectral domain phase microscopy. The displacement noise level depends on the A-scan signal of the structure within the OC and we have attained levels as low as ~0.02 nm in in vivo measurements. The system's broadband infrared light source allows for an imaging depth of ~2.7 mm, and axial resolution of ~3 µm. In future development, the probe can be coupled with an electrode for time-locked voltage and displacement measurements in order to explore the electro-mechanical feedback loop that is key to cochlear processing. Here, we describe the fabrication of the laterally-scanning optical probe, and demonstrate its functionality with in vivo experiments.

10.
Biophys J ; 102(8): 1785-92, 2012 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-22768934

RESUMO

In vitro, attachment to the overlying membrane was found to affect the resting position of the hair cell bundles of the bullfrog sacculus. To assess the effects of such a deflection on mechanically decoupled hair bundles, comparable offsets were imposed on decoupled spontaneously oscillating bundles. Strong modulation was observed in their dynamic state under deflection, with qualitative changes in the oscillation profile, amplitude, and characteristic frequency of oscillation seen in response to stimulus. Large offsets were found to arrest spontaneous oscillation, with subsequent recovery upon reversal of the stimulus. The dynamic state of the hair bundle displayed hysteresis and a dependence on the direction of the imposed offset. The coupled system of hair bundles, with the overlying membrane left on top of the preparation, also exhibited a dependence on offset position, with an increase in the linear response function observed under deflections in the inhibitory direction.


Assuntos
Células Ciliadas Auditivas/citologia , Fenômenos Mecânicos , Animais , Fenômenos Biomecânicos , Células Ciliadas Auditivas/metabolismo , Modelos Lineares , Modelos Biológicos , Movimento , Membrana dos Otólitos/citologia , Membrana dos Otólitos/metabolismo , Rana catesbeiana , Sáculo e Utrículo/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...